skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hogan, Aneila_V C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe vertebrate olfactory system entails a complex set of neural/support structures that bridge morphogenetic regions. The developmental mechanisms coordinating this bridge remain unclear, even for model organisms such as chick,Gallus gallus. Here, we combine previous growth data on the chick olfactory apparatus with new samples targeting its early embryogenesis. The purpose is to illuminate how early developmental dynamics integrate with scaling relationships to produce adult form and, potentially, evolutionary patterns. Olfactory structures, including epithelium, turbinate, nerve, and olfactory bulb, are considered in the context of neighboring nasal and brain structures. ResultsAxonal outgrowth from the olfactory epithelium, which eventually connects receptor neurons with the brain, begins earlier than previously established. This dynamic marks the beginning of a complex pattern of early differential growth wherein the olfactory bulbs scale with positive allometry relative to both brain volume and turbinate area, which in turn scale isometrically with one another. ConclusionsThe mechanisms driving observed patterns of organogenesis and growth remain unclear awaiting experimental evidence. We discuss competing hypotheses, including the possibility that broad‐based isometry of olfactory components reflects constraints imposed by high levels of functional/structural integration. Such integration would include the frontonasal prominence having a strong influence on telencephalic patterning. 
    more » « less